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Abstract: The significance of data visualization in modern research is growing steadily. In mineral 

processing scientists have to face many problems with understanding data and finding essential variables 

from a large amount of data registered for material or process. Hence it is necessary to apply visualization 

of such data, especially when a set of data is multi-parameter and very complex. This paper puts forward 

a proposal to introduce the autoassociative neural networks for visualization of data concerning three 

various types of hard coal. Apart from theoretical discussion of the method, the empirical applications of 

the method are presented. The results revealed that it is a useful tool for a researcher facing a complicated 

set of data which allows for its proper classification. The optimal neural network parameters to 

successfully separate the analyzed three types of coal were found out for the analyzed example.  

Keywords: autoassociative neural networks, coal types, multidimensional visualization, multi-parameter, 

identification of data, pattern recognition, neural networks 

Introduction 

Multidimensional statistical analysis can be divided into many types. Besides typical 

approximations or searching for a regressive equation with the use of numerous 

modern methods (Ahmed and Drzymala, 2005; Brozek and Surowiak, 2005; 2007; 

2010; Drzymala, 2007; 2009; Gawenda et al., 2005; Niedoba, 2009; 2011; 2013b; 

Niedoba and Surowiak, 2012; Saramak, 2011; 2013; Snopkowski and Napieraj, 2012; 

Tumidajski, 1997; Tumidajski and Saramak, 2009), there are also many data-mining 

methods which are widely used. One of them includes visualization methods aimed at 

recognition of differences and similarities between analyzed sets of data. This is 
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frequently a very significant issue in mineral processing where processes are feature-

dependent. 

Owing to the methods of multidimensional data visualization through the 

transformation of multidimensional space into two-dimensional, it is possible to show 

multi-parameter data on the computer screen, thus making it possible to carry out a 

qualitative data analysis in the most natural way for a human being – by a sense of 

sight. One of the methods involves using autoassociative neural networks. This 

method was used in the paper to present and analyze a set of seven-parameter data 

describing samples of three various coal types: 31, 34.2 and 35 (according to Polish 

classification of coal types). It was decided to examine whether the amount of data is 

sufficient for the proper classification of coal types. The application of various 

methods to analyze recognition possibilities of various coal features is becoming an 

interesting issue. Recently, different visualization methods have been investigated 

such as observational tunnels method (Jamroz and Niedoba, 2014; Niedoba and 

Jamroz 2013). However, the application of autoassociative neural networks to evaluate 

the possibility of proper identification of coal type is a novel sort of approach.  

Previous investigations conducted by means of observational tunnels method 

(Jamroz and Niedoba 2014) showed that not only analyzed data are correlated but also 

that only three parameters are sufficient to correct recognition of coal type. 

Furthermore, it was stated that occurrence of high linear correlation coefficient 

between two parameters does not mean the possibility of replacing one parameter by 

another one. However, the main reason of applying autoassociative neural networks in 

this paper is that this method allows some significant parameters without any 

additional analysis. It is not necessary to check which parameters are significant or to 

check which of them are correlated – in fact any additional analyzes are not necessary. 

The result is achieved immediately in the very suitable way for the researcher – by 

sight sense. This is because for neural network is not important if it has 3, 7 or 20 

inputs. Sight sense is a mechanism which was developed by nature during many 

thousands of years. Everyone who performs image recognition knows that it is easier 

to observe, for example, a figure and state if it presents, for example, a giraffe than to 

write a program (using many various known or unknown methods) which is capable to 

recognize this animal on the basis of a photo. That is why connection of 

autoassociative neural network creating two-dimensional figure and our personal 

neural network (brain) analyzing this figure by sense of sight can give more readable 

results. So, it is much easier to check whether the points being part of various fractions 

can be separated by not complicated curve (like polynomial of low degree) or not than 

check it by means of selected analysis. Additionally, because autoassociative neural 

networks are non-linear methods then their abilities and clearness of results are much 

bigger than the ones of simple linear methods. Within previously conducted works the 

analyzes of multi-parameter coal data were performed by means of many methods: 

observational tunnels method (Niedoba and Jamroz 2013; Jamroz and Niedoba 2014), 

Kohonen network, multidimensional scaling (Jamroz 2014b), relevance maps, PCA 
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(Niedoba 2014) and autoassociative neural networks. By means of all these methods 

the satisfying results were obtained for coal and they are described in several papers. 

The detailed comparison of these methods efficiency is in progress. 

General visualization principles of multi-parameter data 

Only multi-parameter analysis of many features describing grained material gives 

sufficient information about the researched material. A number of methods can be 

applied for this purpose, including visualization methods. Based on a big collection of 

data it is often impossible to observe significant differences. Multi-parameter 

visualization, by contrast, gives a chance to do it. There are many techniques of multi-

parameter visualization. The following methods of data visualization should be 

mentioned: grand-tour method (Asimov 1985), the method of principal component 

analysis (Hotelling, 1933; Jolliffe, 2002; Niedoba, 2014), the use of neural networks 

for data visualization (Kohonen, 1989; Jain and Mao, 1992; Aldrich, 1998), a parallel 

coordinates method (Inselberg 2009), multidimensional scaling (Kruskal, 1964; 

Jamroz, 2014b), the scatter-plot matrices method (Cleveland, 1984), method using the 

so-called relevance maps (Assa et al., 1999), method of observational tunnels (Jamroz, 

2001; 2014a; Jamroz and Niedoba, 2013; 2014). The visualization of 

multidimensional solids is also possible (Jamroz, 2001; 2009).  

Experiment 

Three types of coal, types 31 (energetic coal), 34.2 (semi-coking coal) and 35 (coking 

coal) according to the Polish classification, were used in the investigation (Olejnik et 

al., 2010). Seven-parameter data consisted of 205 samples, including 72 samples of 

coal, type 31, 61 samples of coal, type 34.2 and 72 samples of coal, type 35. The 

whole set of data used in this paper can be found in (Niedoba, 2013a). They were 

obtained from three different Polish coal mines. Subsequently, all of them were 

initially screened on a set of sieves of the following sizes: -1.00, -3.15, -6.30, -8.00, -

10.00, -12,50, -14.00, -16.00 and -20.00 mm. Then, the size fractions were 

additionally separated into density fractions by separation in dense media using zinc 

chloride aqueous solution of various densities (1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 

g/cm
3
). The fractions were used as a basis for further consideration and additional coal 

features were determined by means of chemical analysis. For each density-size 

fraction such parameters as combustion heat, ash contents, sulfur contents, volatile 

parts contents and analytical moisture were determined, making up, together with the 

mass of these fractions, seven various features for each coal type. Examples of data 

were presented in Table 1 showing the data for density-size fractions 1.00-0.50 mm 

for type 31 of coal. 
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Table 1. Data for density-size fraction 1.00-0.50 mm – coal type 31 

Density 

[g/cm3] 
Mass 

Combustion 

heat [cal] 

Ash contents 

[%] 

Sulfur contents 

[%] 

Volatile parts 

contents 

Va 

Analytical 

moisture Wa 

<1.3 4187.8 7367 1.25 0.63 36.02 4.15 

1.3–1.4 2864 7021 3.35 0.66 32.14 4.33 

1.4–1.5 310 5939 18.78 1.33 27.54 2.55 

1.5–1.6 102.3 5547 23.83 1.66 26.87 2.80 

1.6–1.7 111.9 4911 30.54 1.91 25.98 2.65 

1.7–1.8 91.3 4177 39.94 1.93 25.17 2.35 

1.8–1.9 80.9 3462 47.43 1.74 24.00 2.29 

>1.9 1051.8 762 82.20 1.72 13.05 1.14 

Autoassociative neural networks 

Method description 

Autoassociative neural networks are an example of self-organizing neural networks 

which learning process occurs without the teacher. When applied to visualization of 

multi-parameter data, the network has n inputs, one of indirect layers consisting of 2 

neurons and n outputs. The number of network inputs and outputs is equal to the 

number of parameters of the analyzed data. The network is learnt by error backward 

propagation method.  

 
Fig. 1. Structure of autoassociative neural network used for multi-parameter data visualization. 

 (a) network training for receiving signals on outputs possibly closest to signals on inputs,  

(b) transformation of input signal in location on two-dimensional screen  

with the use of a fragment of previously learnt network 

As a result of learning process, the same signals should impact both the outputs and 

inputs of neural networks. The described network is based on a change of input n-

dimensional space B into two-dimensional space Y and then back into n-dimensional 

space B
*
 in the most similar way to B. The data going through the layer of two 

neurons, which outputs represent two-dimensional space Y, is compressed by network, 
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thus resulting in a two-dimensional preservation of certain individual features of 

original data from space B, which allows for reconstruction of the data.  

When the learning process is over, the data visualization can be started. It consists 

in providing input to each data vector x on the neural network and projecting two-

dimensional point representing it (on the basis of data from hidden layer consisting of 

two neurons). The location of this point is determined by two coordinates taken 

directly from the outputs of two neurons which constitute indirect layer and represent 

(in a compressed way) space B. A general working scheme by learning and 

visualization of such network has been presented in Figure 1.  

Algorithm  

A set of input data consists of elements described by n features. It can be then treated 

as a set of n-parameter vectors. The visualization based on autoassociative neural 

networks involves two stages. 

I) Self-organization of network. In this stage all neuron weights are calculated on the 

basis of input data (Fig. 1a). The algorithm developed to fulfill this stage includes: 

1. scaling of input data in order to ensure that the neural network can reproduce it as a 

result of the learning process. Individual features representing data parameters 

were scaled so fit the network output permissible range. In order to calculate the 

value of neuron output the function of hyperbolic tangent was used (described in 

equations (1) and (2)). So, the values of network outputs are within the range (-1, 

1). It was decided then to scale the individual coordinates (features) of data sets to 

range (-0.9, 0.9),  

2. randomization of all weights wi,j,k for all neurons (where wi,j,k is the weight of k
th
 

input of neuron located in i
th
 network layer on j

th
 position). Each weight was 

assigned to a value within the range (-0.5, 0.5) by applying plate probability 

distribution.  

The next points 3-7 are carried out for each of input data vector ITER times (ITER is a 

parameter accepted in a given moment): 

3. the output values for all neurons located in first layer are calculated for the next w
th

 

vector of input data. The weight is associated for an input of every neuron in the 

network. An input signal has an influence upon output signal. Additionally, the 

value of output signal depends on an additional weight (with adopted index 0) 

which determines component constant. To each neuron the n+1-parameter weight 

vector is assigned, where n is the number of network inputs. The value of output of 

first layer neuron is calculated according to the formula: 
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where: g – adopted non-linear function, n – number of network inputs, yi,j – value 

of output of neuron located on i
th
 layer of network on j

th
 position (for the first layer 

of neurons the value of i is equal to 1), wi,j,k – weight of k
th
 input of neuron located 

on i
th
 network layer on j

th
 position, xk,w – k

th
 feature of w

th
 part of input data set (k

th
 

coordinate of w
th
 data vector). Application of non-linear function g in Eq. (1) 

allows to increase the calculating possibilities of neural network. In conducted 

experiments the hyperbolic tangens function was used as this function.  

4. The values are calculated for all neurons’ outputs located in all individual network 

layers. The calculations of neurons’ outputs in the next layer can always be 

followed by the calculation of neuron values from the previous layer. This can take 

place because the values of previous layer outputs constitute at same time inputs 

for the next layer of neurons. In this way the values of all neurons in all layers are 

calculated.  
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where: size (i–1) – number of neurons in i–1 layer, yi,j – output value of neuron 

located in i
th
 network layer on j

th
 position, wi,j,k – weight of k

th
 input of neuron 

located in i
th
 network layer on j

th
 position, g – adopted non-linear function, the 

same as in equation (1).  

5. For the purpose of calculating the errors of network output, it is necessary to obtain 

the difference between network input values (what is supposed to be obtained) and 

output values obtained on the last layer of neurons. This difference is then 

multiplied by a derivative of function g adopted in equations (1) and (2), which is 

the derivative of hyperbolic tangens function, obtaining: 

   jiwjjiji yxy ,,
2

,, 1   (3) 

where: δi,j – calculated error value of output of neuron located in i
th
 network layer 

on j
th
 position (in this equation i means the number of last network layer), yi,j –

output value of j
th
 neuron of i

th
 layer, xj,w – j

th
 feature of w

th
 part of input data set.  

6. The errors of neurons’ outputs from other network layers, individually from the 

penultimate to the first layer, are calculated as following:  
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where: δi,j –calculated error value of output of neuron located on i
th
 network layer 

on j
th
 position, wi+1,k,j – weight of j

th
 input of k

th
 neuron from i+1 layer, size (j+1) – 

number of neurons located in layer j+1, yi,j –output value of j
th
 neuron from i

th
 

layer.  
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7. Modification of neuron network weights on the basis of previously calculated 

errors. The modification was adopted according to the formula: 

 kijikjikji yww ,1,,,,,
~

    (5) 

where: wi,j,k – weight of k
th
 input of j

th
 neuron from i

th
 layer, kjiw ,,

~ – weight wi,j,k 

after change, δi,j – value of error of j
th
 neuron output from i

th
 layer, yi-1,k – value of 

output of k
th
 neuron from i+1 layer, η – speed of learning, the constant 0.01 was 

adopted.  

II) Projection of image (Fig. 1b). Points 1-2 are realized for each input data vector. 

1. The values of outputs of following neuron layers are calculated for next w
th
 input 

data vector. The calculations of the values of next neuron layers are conducted 

until the output value of determined two-neuron layer is found. Which layer it is 

should be assumed at the beginning during the construction of neural network. 

Let us assume that values obtained from outputs of these two neurons are u and v.   

2. The symbol representing fraction of w
th
 data vector is drawn on screen in point of 

coordinates (u, v). The values u and v are within the range (-1, 1) – it occurs from 

the previously accepted hyperbolic tangent function in equations (1) and (2).  

The image of “locations” through which the data representing individual coal 

fractions flow is created in this way.  

Results and discussion 

During investigation the analysis was performer for various parameters. Such 

parameters were searched by which neural network is able to group coal data in the 

possibly best way. Some obtained parameters need to be accepted as constants – for 

example, number of network layers and non-linear function g (on which basis neuron 

outputs are calculated). For further analysis of coal data is sufficient to select initial, 

random values of all neurons weights generated by pseudo-random generator of values 

and value of parameter ITER – meaning number of learning repeats. Choice of other 

set of values generated by random numbers generator is not a problem. However, 

choice of the moment of stopping learning process requires experience and knowledge 

of neural networks functioning way.  

Neural networks are very specific. They are being learnt till the moment when they 

will recognize correctly. If learning process is too short then it will be insufficiently 

well prepared. However, in practice of artificial neural networks the phenomenon of 

network “over-learning” exists when the learning process lasts to long. It happens 

because algorithm tries more and more adequately fit function realized by network to 

samples and this causes that this function becomes very complex, with large number 

of extremes – as a result it will recognize samples being outside learning set 

incorrectly. Example of function being realized by correctly learnt network and by 

“over-learnt” network is presented on Figure 2. That is why at certain moment when 
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neural network is already learnt, the learning process should be stopped. In purpose of 

checking if network was learnt, various criteria can be searched. Figure 3 shows 

relation between network error and parameter ITER. This error is calculated as mean 

squared error of difference between individual inputs and outputs of the network for 

all samples and network inputs. This graph was obtained for data containing 3 types of 

coal, showed on Figs 5–6. In case of this data for ITER = 5 this error was equal to 

0.104462, for ITER = 30 it was equal to 0.028714 and for ITER = 9000 it was equal to 

0.006332.  

 

Fig. 2. Examples of two functions of one variable being realized by the same neural network  

learnt on the basis of the same set consisted of 6 points. Part (a) shows function realized by network 

 learnt correctly, part (b) shows function realized by “over-learnt” network   

 

Fig. 3. Relation between network error and ITER parameter. Error is calculated as mean square error of 

difference between individual inputs and outputs of the network for all samples and network inputs  

In practice, this graph does not give much because it always presents function 

which lowers till certain limit. Additionally, in case of neural networks, as it was 

mentioned before, during learning process till certain moment we achieve better and 

better results and then, despite that error still lowers, network becomes “over-learnt”. 

Thus, if views from which occurs that separation is possible were obtained it means 

that in analyzed data (in chosen parameters) information allowing proper recognition 

gathers. In case if analyzed data (containing chosen 7 parameters) do not contain 

information necessary to identify coal type then independently on learning process 
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length is not possible to achieve views showing that data of various fractions are 

located in other part of the figure. It should be remembered that during network 

learning no information about what fraction is represented by the sample is provided. 

That means that during learning process network does not know if any two samples 

represent the same fraction or various ones. Only after ending of learning process 

(during plotting) each sample is assigned with number of fraction of which it is part. 

This is done in purpose of checking if network assigned to each fraction other part of 

the 2-D space (graph).  

Based on assumptions put forward in the previous chapter a computer software was 

developed to visualize seven-parameter data describing various types of coal. The 

software was developed C++ language by means of Microsoft Visual Studio. The 

experiment led to a conclusion that the best results from the analysis of data describing 

various coal types were yielded by a 6-layer neural network. Three layers serve to 

compress data from seven to two parameters while the other three serve to decompress 

from two to seven parameters. The third layer consists of two neurons (their outputs 

serve to visualization) and each of the remaining layers consists of 7 neurons. In 

Figure 4 the topology of network was shown. The outputs of neurons y3,1 and y3,2 are 

the outputs of two-neuron layer on which the visualization was based. Full 

information is transferred through these two signal outputs, which is necessary to 

reconstruct seven-parameter input data. This is why on the basis of these outputs, it is 

possible to read the coordinate values of the point located on plane which represent 

seven-parameter input data vector.  

 

Fig. 4. Topology of autoassociative neural network with the best results. Three layers  

serve to compress data and three to reproduce data. Outputs y3,1 and y3,2 of the layer  

consisting of two neurons serve to visualize seven-parameter data 

The obtained results were presented in Figures 5-9. The views show a way of 

compression of seven-parameter data by neural network to two parameters determined 

by outputs y3,1 and y3,2 of the network. The compression must allow for a 

reconstruction of seven-parameter input data by the last three network layers, hence it 

should contain all information needed for this purpose. In this way it is possible to see 

all significant features of seven-parameter data on two-dimensional screen.  
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Fig. 5. A presentation of seven- parameter data representing three various coal types by parameter 

ITER=30 shown by neural network with two signals y3,1 and y3,2. Signals representing samples of coal 

type 31 were marked with (■), (+) – samples of coal type 34.2, (o) – samples of coal type 35 

Figure 5 shows the view obtained by parameter ITER=30. The adopted ITER value 

means that the self-learning process network was conducted for each input data vector 

30 times. Figures 5-6 show how the network evolves. It can be seen that the signals 

which are a reply to data representing the same coal types start to occupy separated 

subareas and groups. In Figure 5 it can be noticed that by small value of parameter 

ITER=30, the signals representing the same types start to group. However, in some 

parts of the space, the signals of various coal types still overlap. In Figure 6 

(ITER=9000) it can be observed that signals which are a reply to data representing 

samples of certain coal type gather. It can be seen that these gatherings can be 

separated. The clearness of the signal space division grows along with the increase of 

ITER parameter, so with the network learning process. It should be pointed out that 

the information of data vectors affiliation to certain fractions was not taken into 

account during self-learning of the network (calculating of weights). Therefore, the 

grouping of signals (i.e. those that go through layer consisting of two neurons) 

representing a certain fraction depends only on certain data properties noticed by the 

network. 

In order to achieve even more clear results, it was decided to make a presentation 

of the same data in other way by means of autoassociative neural network. An 

examination was conducted how network will allocate signals to data representing 

coal types in pairs. Figure 7 depicts network data on coal types 34.2 and 35. It is even 
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more clear that signals representing coal type 34.2 gather in aggregations which can be 

easily separated from signals representing samples of coal type 35. 

 

Fig. 6. A presentation of seven-parameter data representing three various coal types by parameter 

ITER = 9000 shown by neural network with two signals y3,1 and y3,2. Signals representing samples of coal 

type 31 were marked with (■), (+) – samples of coal type 34.2, (o) – samples of coal type 35 

 

Fig. 7. A presentation of seven-parameter data representing three various coal types by parameter 

ITER=4000 shown by neural network with two signals y3,1 and y3,2. Signals representing samples of coal 

type 34.2 were marked with (+) –, (o) – samples of coal type 35 
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Figure 8 depicts the way how neural network presents data representing coal types 

31 and 35. It is also clear that signals representing samples of coal type 31 gather in 

aggregations which can be easily separated from signals representing samples of coal 

type 35. Figure 9 shows the way how network presents data representing coal types 31 

and 34.2. It can be clearly seen that signals representing samples of coal type 31 gather 

in aggregations which can be easily separated from signals representing samples of 

coal type 34.2.  

 

Fig. 8. A presentation of seven-parameter data representing three various coal types by parameter 

ITER=17120 shown by neural network with two signals y3,1 and y3,2. Signals representing samples 

 of coal type 31 were marked with (■), (o) – samples of coal type 35 

If it is possible to confirm the possibility of separation of coal samples, type 34.2 

from coal type 35 (Fig. 7), the possibility of separation of coal samples, type 31 from 

coal type 35 (Fig. 8) and, furthermore, the possibility of separation of coal samples, 

type 31 from coal type 34.2 (Fig. 9) is also confirmed, then it can be stated that the 

samples of all three types of coal can be separated from each other. The application of 

multi-parameter data visualization by means of autoassociative neural networks allows 

to arrive at a conclusion that the information about seven-parameter input data 

describing samples of three coal types is sufficient for their proper classification.  
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Fig. 9. A presentation of seven-parameter data representing three various coal types 

 by parameter ITER =5230 shown by neural network with two signals y3,1 and y3,2, show. Signals 

representing samples of coal type 31 were marked with (■), (+) – samples of coal type 34.2 

Conclusions  

The conducted experiments involving the visualization of seven-parameter data 

visualization by means of autoassociative neural networks allowed to draw the 

following conclusions.  

1. Visualization of seven-parameter data by means of autoassociative neural networks 

allows to state that the information in analyzed seven-parameter data is sufficient 

for the proper classification of coal types 31, 34.2 and 35. 

2. Even the presentation of three types of coal in one Figure allows to state that signals 

representing samples of coal of certain type gather in aggregations which can be 

easily separated. It occurs that data contains information sufficient for the proper 

classification of coal types. 

3. Presentation of data representing various coal types in pairs by means of 

autoassociative neural networks allows to obtain even more clear results. 

4. The best results were obtained by means of neural network consisting of 6 layers. 

Three layers served to compress data from 7 to 2 parameters and three layers 

served to decompress from 2 to 7 parameters. Third layer which comprised two 

neurons, which outputs served for visualization purposes, and each of the 

remaining layers consisted of 7 neurons.  
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5. Clearness of results grows along with the learning progress of neural network 

(growth of parameter ITER value). 

6. Whether the results are clear highly depends on adopted parameters. The change of 

these parameters results in different allotment of individual areas of signal space 

by neural network to data representing various types of coal. 

7. Some sort of problem arising from such visualization is the necessity of selecting 

parameters in order to obtain a view which clearly presents the searched 

information. It should be noticed that during conducted experiments the views 

obtained by means of neural networks ranged from 3 to 8 layers. These views 

were obtained by ITER parameter value equal from 1 to 30000. The experiments 

were conducted for various initial ranges of weights. The results presented in the 

paper include the clearest ones from the all obtained.  
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